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Design of Impedance Transformers
by the Method of Least Squares

Homayoon C)raizi, Member, IEEE

Abstract—The method of least squares is applied to the theory
of small reflections of transmission lines to develop numerical
algorithms for the design of stepline and tapered line impedance
transformers to match two impedances over a frequency band.
The transformer characteristic impedance function is expanded
by polynomials, pulse functions, approximate operators, and
piecewise linear functions to construct an error function for the
input reflection coefficient which, after minimization, gives the
line impedance and length. The computer programs could be used
to design a transformer under the specified conditions and then
to optimize the design under the constraints of a problem.

I. INTRODUCTION

M ATCHING networks are frequently required at the load
end of a transmission line and at its generator side.

Impedance transformers are also required at various points
in-a microwave network. Impedance matching techniques are
broadly divided into two types [1]:

1) maximum power transfer or conjugate matching
whereby a load impedance (or a transmission line input
impedance) is set equal to the complex conjugate of the
generator impedance;

2) reflectionless or Zo matching whereby a load impedance
is set equal to the characteristic impedance of a trans-

mission line. This results in a reflection coefficient of

zero at the load and an SWR on the line equal to unity.

Transformers are, in general, required to match two gen-
eral complex impedances (not necessarily constant) over a
frequency band, Several procedures are available for the design
of tapers and steplines (corresponding to high pass and band
pass filters, respectively) to achieve reflectionless transitions
between two different line impedances over a frequency band.
Excellent discussions of impedance transformation and match-
ing are available in several books [1]–[6] that refer to the
relevant literature [7].

Stepline transformers are made of a cascade of uniform
sections of transmission lines such as quarterwave, quarter-
wave multisection, binomial, and Chebyshev transformers [2],
[8]–[ 11]. Step discontinuities, however, introduce junction
impedances (such as change in width of microstrips and
striplines), which should be accounted for in the design of

stepline transformers. Tapered line transformers are made of a
nonuniform section of a transmission line. The taper is usually
named after the function of distance along the line which
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describes the characteristic impedance or reflection coefficient
such as exponential, triangular, and Chebyshev tapers [2],
[13] -[15].

As is seen, the theory of stepline and tapered line trans-
formers is quite involved. We recall that the input reflection
coefficient of a taper is governed by a Riccati differential
equation, however, little effort to date has been spent for
the development of numerical methods for the synthesis of
nonuniform transformers.

In this paper, a numerical procedure is developed to synthe-
size stepline and tapered line matching sections by the method
of least squares (MLS). The theory of small reflections is
assumed, and the input reflection coefficient of the matching
section is minimized to determine its characteristic impedance
variation. The least squares numerical procedure is first de-
veloped. The computer implementation is then presented. The
results of the transformer designs agree well with the published
data obtained by other design methods. Several interesting
behaviors of the stepline and tapered line matching sections are
revealed by the computer programs run for various examples
of impedance matching.

Besides developing an easily implemented numerical prcsce-
dure for the design of stepline and tapered line transformers of

any length over a frequency band, the solution of this problem
by the method of least squares illustrates the power and
applicability of this method for the solution of electromagnetic
problems.

II. NUMERICAL PROCEDURE

The theory of small reflections of the nonuniform lines is
applied for the development of a numerical algorithm for the
synthesis of a stepline or a taper to match two impedances over
a frequency band. Consider a tapered line with characteristic
impedance Z(z) as a function of distance connecting a voltage

source with internal impedance 29 to a load impedance ZL
as in Fig. 1. Assume that the characteristic impedance of the
input line is equal to the internal impedance of the source
(Zg = Zc), which is resistive and constant in the desired
frequency band. All impedances are normalized with respect
to the input line characteristic impedance as

~, = 1, Z(z) = Z(z)/Z,, and ~L = ~L/.Zc.

Now the reflection coefficient at the tapered line input is [2]

(1)
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The second integral in (8) is integrated by parts successively
or obtained from tables of integrals [17]. Then

Z=o z=L

FIg 1 A tapered line connecting avcrltage source to a load

1= _c-f2jjL ln~(~) +.ji~
/

‘e–.lzl~: ln~(z) ~z.
2

(2)
(J

The latter expression M obtained through integration by parts.
The boundary conditions at the two ends of the line are

Z(0)= Z. =1,2=0

Z(L) = ZL, 2 =L (3)

where L is the length of the nonuniform line.
To develop an algorithm for the determination of the stepline

and tapered line shape, the functions Z(z), in Z(z) or d/dz
in ~(z) are represented by a polynomial, pulse function
or step approximation, triangle function or piecewise linear
approximation, and an approximate operator [16]. An error
function is then constructed for r, and minimized to obtain

the coefficients of the polynomial or the amplitudes of the
expansion functions.

A. Polynomial Expansion of-& h~~

Assume that the function d/d,: in ~ can be approximated
by a polynomial of degree N, from which in ~ and ~ may
be obtained

(4)

where c is a constant, We invoke the boundary conditions (3)
to determine c = O and aO in terms of the other coefficients
of the polynomial

(6)

Now, (]. from (6) is replaced in (4) and integrated or a. is
substituted in (5) to obtain an expression for in ~

Equation (7) is substituted in (

l– sin /~Le_JhT~

“ = zln(zL) $L -:5 “nL’+’
n=l

1 sin /!jL~_lpL
+ ——

n+l &L 1 (9)

Note that 17i is a linear function of a,,, which should be
determined.

Usually, an impedance matching is required over a fre-
quency band, which is divided into K discrete frequencies.
Now, the expression for 17Zin (9) can be written in a concise
form as [16]

N

r,k = tk+ ~ lrlkan (10)
n=l

where tk and lk are defined as in (9). The subscript k
indicates the kth frequency and the quantities fi and ~L should
be substituted by ~~ and ~L~, respectively, Then, an error
function is constructed as

A

The error function is constructed in such a way that its
minimum point gives the minimization of Ir, 12and SIT’R [2,
p. 299]. To minimize the error function. we take the derivatives
of c with respect to a. and equate to zero to obtain an
expression for an

‘“n’=FeE’nkl~l-’[-Res’’ktkl ’12)
Therefore, determination of the polynomial coefficients leads
to a mere matrix inversion.

The error function is a nonquadratic function of the taper
length (L). Therefore, its minimization with respect to L is
performed separately.

The derivative of the error function with respect to L k

1)

d~.k nLn
(14)

;?an –[

sin /jk L

8L ‘n+l 1

cos~3k L – (1+:j/?h L)~ e–J)3k L.

rl=l (15)

Ln L—

–~ 1~-fj’sz&(8)Minimization of ~ for L is performed by any one of the
n+l ~ usual routines of linear search such as the steepest descent
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of Z(=) by impulse functions employingAO for d\dsln Z.

[18]. Once the taper length is obtained, theand interval halving
new values of the polynomial coefficients may be determined
by (12). In many cases, however, the length of the taper is
constrained. Finally, the characteristic impedance function of
the taper is determined by (7) once the coefficients an are
calculated,

Approximation of in ~(,z) by a polynomial function leads

to the same results obtained above and could serve as a check
of their accuracy.

For an example, suppose the polynomial in (4) has only one
term ao. Invoking the boundary conditions (3) leads to

The reflection coefficient at the line input according to (1) is

1 – sin /3~e_jpL

“=E1nz L ,BL

and the error function is c == Ir, 12. The derivative of c with

respect to L is

The minima of E occur at ,BL = nn for n = 1, 2, 3,.0.

L=2n~,’n=l,2,3, . . .

The maxima of E occur for tan ~L = /3L which may be

determined graphically. For large values of /3L we have

,13L= (2n + l)7r/2 and L = (2n + l) A/4

fern = 0,1, 2,....

The above relations in this example may also be obtained from

(7), (9), (11), (13)-(15). Compare this result with [2, p. 372].

B. Approximation of in Z(z) by Pulse Functions

The multisection line of length L is assumed to have
IV + 1 sections as in Fig. 2. The length of each section is

A = L/(N + l). The midpoints of the sections are at Zn = nA
forn=l,2,. . . , ~. The pulse in the nth section is defined as

{

1
P.(Z –2n) = o

Iz-znl<$

I.z-zn,l > +.
(16)

Now the function in Z(z) in the interval O ~ z ~ L on the

multisection line is expanded as pulse functions
N+l

(17)
n=o

where a. are the pulse amplitudes. The pulses PO and PN+l

are defined in the intervals O ~ z < A/2 and L – A/2 < z <

L, respectively. All impedances are normalized with respect
to the input impedance. Invoking the boundary conditions in
(3) leads to aO = O and CLN+l = h ~L, which are replaced in
(17). To determine d/dz in [~(z)], the derivatives of the pulse
functions should be taken, which lead to impulse functions at
ILA + A/2. Substituting this function into (1) and performing
the resulting integrations noting the sampling property of the
impulse functions, we finally have

N

r, = j sin (~fl)~ am exp (–j2n/?A)
rl=l

+ ~ ln~Lexp [–j(21V + 1)/3A]. (18)

Equation (18) can also be derived using (2).
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Fig. 5 Approximation of [n Z(:) by triangle functions PLA

TABLE I
EXAMPLESOF IMPEDANCETRANSFORMERDESIGN

Meth. Fig. L,n N F1 Fu K Zin ZL E,” Q &f

(cm) (GHz) (GHz) No.Freq. (Q) (Q) initial error (cm) final error

PA 6 5.0 2 1.99 4.01 20 1 2 0.100534 10.8 0.006717

PE 7 7.5 ‘i 1 5 20 1 5 0.557775 19.7 0.010562

AO 8 7.s 7 1 5 20 1 5 0.526697 20.7 0.0046S5

PLE 9 7.5 8 1 5 20 1 5 0.526697 20.7 0.004655

PLE 10 10.0 5 1 2 20 1 2 0.023877 24.7 0.000064

PE 11 7.5 4 1 5 20 1 10 1.743317 12.0 0.420956

PLE 12 7.5 4 1 5 20 1 10 1.522610 33.0 0.043228

Impedance transformers are usually designed over a fre-

quency band. Therefore, to use (12) for the determination of
the pulse amplitudes, we require the following

. Cos [2(WL– ‘n)/(3kA] (19)

. sin [(2m, – 2AT– 1)/l~A]. (20)

For the minimization of the error functiorl with respect to the

line length we use (13) with the following

The characteristic impedance of the multisection line in
of the pulse amplitudes is

(21)

(22)

terms

(23)
n=l
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P13LYNCItlIf3L EXPFtNSICtN METHCID

0 L

fl.1.99E+09 K=2CI Lin=i3.05Cl M Zi=l.OCl
fu=4.tllE+C19 N=~ Lf =0.108 M ZL=2.OCJ

I:;after
‘“ "'`"'"'"'"'"""Lk"?7:":'"::!r!!:":-"l"'\'F:l:"!":"?"!:::::::::!:;:l.. ...

fi#J4 I I 1.5fu
fl fu

before L opt. : E= i3.Mlc1534 after L apt . : E= IJ.D06717

Fig. 6. Tapered line transformer design by polynomial expansion before and after length optlmlzatlon,

PULSE EXPFINSIC!N METHOD

before L apt. :

Zml =1.5141
202 =1.2639
203 =2.Q956
Z04 =2.2361
205 =2.386
206 =3.956
207 =3.3023

E= n.557775

Fig. 7. Stepline design by

after L opt . :

Z(I1 =1.iJS16
Z02 =1.2768
203 =1.6443
204 =2.2361
205 =3.0408
206 =3.9161
ZC)7 =4.6229

$’1 = 3.E+CM K=2Cl Lin.Cl.C175
u=5E+!39 N =7 H

i=l.Cltl
t_f =0.197 =5 .cm

Zi

I

II C= 0.0M3562

PE before and after length optimization

fl/4 I I 1 .5fu
fl fu

For example, suppose that aline oflength Lis divided into
two sections. Therefore, N = l,A = L/2, and ZI = L/2.
The pulse functions are ~.(z) = 1 for O ~ z < L/4,

Pl(z– L/2) =lfor L/4< z<3L/4. and PZ(z– L)= 1
for3L/4< z s L. The line input reflection coefficient from
(18) and the corresponding error function from (11 ) are

2 ‘L 2 h~Lsin
~ /3L 1

e = sin —al —
2

~al + ~ln2~L

Taking the derivative of c with respect to al and equating—
to zero gives al

the lineby (23),
function for this

z(z) =

—–ln~ZL. The characteristic impedanceof
the input reflection coefficient and the error
value of al are



394 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL M>NO 3, MARCH 1996 “

RPPFMJXIMRTE OPERRTCIR METHOD

before L opt . : after L opt. : 2

Z(31 =1.5474 Zml =1.i3828
ZC)2 =1.248 Zm2 =1.2782
ZQ3 =2.1257 2%3 .1.6455
Z04 =2.2361 II 204 =2.2s61
Zc)!i=2.3522 Zc)s =3.c13#7 Zinr

Z06 =4.0063
Zm’? =3.2311

E= C1.52669i’

Zob =3,9118
Z97 =4,6177

E= (3.CMJ4655

,Fig. 8. Stepline design by AO before and after length optlmlzatlon

()

/lL _Jj~
I’, =~lnZ~cOs ~ e
,-

~=~,n2z ~o~2~

4 L 2“

The error function becomes zero for odd multiples of a half
wavelength L = (2n,+ l)L/2, n = O, 1. 2 . . . . Note that in
this formulation one section of length ,4/8 with impedance
Zc = 1 is placed at the input end of the line andone J/8
line of impedance is placed at the output end. Therefore,

a quarterwave line of impedance & matches the two
impedances ZL and 1. For the design of an lV section

quarterw~ve transformer by this method, the line length should
beL= (N+l)A/4orA=J/4.

C. Appro.~imate Operator for &In ~(z)

The line of length L is divided into N+ 1 sections. The
width of each section is A = L/(N + 1). The distance of
each division point from the input end is z. = TL~ as in Fig.
3. The characteristic impedance ~(z) is represented as a series
of impulse functions in the interval O < z < L

N

z(:) = ~on6(2 –nA). (24)
7)=0

The boundary conditions (3)giveao=lfor OSz < A/2 and
O.W-+l=~L for L–A/2 < : < L. We use the approximate
operator for the derivative of ~(z) at the midpoint of each
section

:1112(2) 1,=(.-1/2)4

N ~ lnz(’r/A) – lnz(nA – A)]~[

1=lE+i39 K.2CI l-in. Cl. C175
u=5E+CW N =7 Lf =C1.2C17

i \

Z“=l. clcl
z =5.00

:,. .. . .. . :.:... .

= *111

()
: .(7-7 -l).A<Z <77A. (25)

n

The approximate expression (25) is inserted in (1) and the
resulting simple integration is carried out to obtain the input
reflection coefficient

We use (12) todetermineln an with the following

Cos [2(WL– n)/~k’A]

sin [(2m – 21V – l)~?~A].

Minimization of the error function with respect to the
length is carried out by (13) using the following

i31nk
—.~$e –j2r7/j!A

8L

“[

sinz (/3,jA)
sin(2[l~A) – (l+j2nfl~A)

}3kA 1

(26’)

(27)

(2%)

line

(30)
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PIECEWISE LINEfiR EXPfINSIi3N METHOD

z(z)

tapered line before L opt. : o; ; 2
taper~d line after Lcrmt. : ■; ;.......
:::: :::: :::: :::: ::
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1 -1—
Ct L fl

befare L apt . : E= 0.526697

201 =1 .5474
Z&? =1.248
Zch3 =2.1257
Z04 =2.2361
ZQS =2.3522
206 =4.aa63
207 =3.2!311

F]g 9. Tapered line design by PLA before and after length optlmlzatlon

For example, suppose that the line length Lis divided into

two sections of width A = L/2 andiV = 1. Therefore

Taking the derivative of c with respect to lnal and equating

it to zero leads to a, = &. The reflection coefficient for
this value of al is

Theerror function is zero for A = r~A/4 and L = nA/2 for
‘IL= 1,2> 3,.... Thecomment attheend of Section II-B also
holds here.

D. Piecewise Linear Approximation ofln Z(z)

The tapered line of length L is divided into N sections
of width A = L/N as in Fig. 4. The division points are at

‘% =nAforn = 0,1,2,... , N. The value of in ~ at z.
is taken as a,, and its variation in each section is assumed
linear. Therefore

in z(z)=
arL— am_l

Z+an–l – (7L– l)(a. – a._l),

(n-: As@z A n=l,2,3,, N. (31)

1=lE+CE! K=20 Lin=ll .i3?5

H

Z.=l. cm
u=5E+C19 N =8 Lf =0 .20’7 z =5,00

after L apt . : E= 0.004ss5

Zoi =1.0828
202 =1.2782
za3 =1.6455
ZC14 =2.2361
ZCJ5 =3.0387
Z06 =3 .9118
z&7 =4.6177

The boundarv conditions atz=O(forn= land ~(0)=l). .,.
and at z = L (for n = N and Z(L) = ~~) are applied to
get aO = 1 and a~ = in ~~. Then substitutions of(31 ) in (1)
or (2) yield (26) except that N is replaced by N – 1, since
here the line is divided into N instead of N + 1 sections. Also
note that the unknown quantities here are an, whereas in the
previous section they are in an. Consequently, the approximate
operator ford/dz ln~andthe piecewise linear approximation
ofln Z(.z) arethesame technique. Therefore, (26)–(30) apply
here also, except as noted above N is replaced by N – 1. The
characteristic impedance of each section is

[
Z(z) =exp a“-Aan-lz +na,i-l-(n-l)an 1

x(n-l)Asz<rzA. (32)

Alternately, the function ln ~(z) can be approximated by
triangle functions of amplitude an as in Fig. 5

N

lnZ = ~ a.T. (z – nA) (33)
n=l

{

1+-AI*
l-n(z)= o

12f-nAl<A (34)

lz-nAl>A

{--
-&Z’(x)= ~: nA <z< (n+l)A

(n–l)A<z<nA.
(35)

x

The triangle functions at the two ends of the line have only
one linear segment, at z = O a line with a negative slope and
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fl=lE+C19
i

K=2Cl Lin=O, lDCi m Zi=l, 0
fu=2!E+i29 H .5 Lf =W.247 m ZL=2. Cl

PIECEWISE LINERFI EXPRNSICIN METHCW3

Z(z>

tamered line before L opt. : 0: ~
tapered line after Lc)pt. : ❑: :

,,-
::: ,: ,, :,.

,: ,:,, ,:, . ;,, ,:,,
r-.1::

::
., ;,,,:,

::
. .

. . .
:,
::
::
;.;,.

.

:0: ❑ : : :0:0;:
:9 :.:

:..=... ,,...,h.i.ti..:...:.,
b=: ,Ob, : ;

:0: : : k: : : ,*, :

. . .:.c):m”. .: :..:4..:..: :..:.: :. :
h:ti E.?: : : : : : :

c) : a: : .m:i-J: : : : ::’
..:...;9;..;...;O:...:..=..;.;..:...:..;...;..:...;..:...:...:.

c!:: :Qm;m’c3 :::::: ::::
‘~

,.:g’,:. :,%f:$:.c..:...;. . : :..:.: :..:.,,:,..;.,
d’ :..p ~:=:::::” ,;

!.@
%m-..:o :: :.:,, :,

u

. . . .
::” ::

c1 1- fl/’4 I I 1 .5fu
f’1 f’u

after L opt . : e= cl.mmchs4before L opt . : E= CI.Ci23#T7

Zml =1.0578
Za2 =1.2562
ZcS3 =1,5922
Z04 .l.#9ci7
za5 =2

Zml =1.4185
Zc)2 =0.98698
Z03 =2.0264
zc14 .1.4099
205 =2

Fig, 10, T~pered hne design by PLA,

at z = L a line with a positive slope. Therefore, at z = O no The reflection coefficientby (26) withN = 1 is
triangle function is considered since CLO= ln~(0) = lnl = O,

and at z = L only a positive slope line is considered since
(lN = ln~(L) = ln~~. Substitutions of (33)–(35) in (1) or

(2) yield the same equation (26) with N replaced by N – 1.
We may also develop the piecewise linear approximation of

~(z). However, the expression of 17, will be in terms of cosine
and sine integrals and the construction of the error function and
lts derivatives become unduly complicated.

r,~
sin (TL/~~c–J(2mL/A)

TL/A

“[
jal sin(7rL/A) + ~ lnZ~e-J(mLi~)

The derivative of c with respect to al is equated

obtain fl~ = in &. Therefore

‘Lz’=exd;!’nzd0<2‘L

to zero to

For example, suppose the line length (L) has only one
segment (,V = 1). Therefore, ~(z) in (31) and 17Zin (26)
with N = O are

“)= ‘Xp(w’)
1 sin /?L

r,=- —ln~~e
2 /’iL

The error is c = 11’,12. The reflectionless line length is
L=n,A/2. Compare this result with [2, p. 372].

-,3L

for no reflection isThe error is f = 117Z2. The condition
L = rA/2forn = 1. 2.3.. Compare this result with [2.
p. 372].

For another example, suppose the line length (L) is divided
into two segments (N = 2) with width A = L/2. The
piecewise linear expansions in (31 ) are

(+flj.:

III. COMPUTER IMPLEMENTATION

Computer programs have been written for the four ap-
proximations of the characteristic impedance function of the
transformer. Although the approximate operator (AO) and the
piecewise linear approximation (PLA) essentially result in
the same formulation, tht: former gives the impedances of a
stepline (24), and the latter produces the impedance function
of a taper (32), besides giving the stepline impedances. The
pulse expansion (PE) formulation designs a stepline (23), and
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PULSE EXPRNSIIJN METHCID

before L opt .: after L nnt .:

Zol =1.5232 Zol =1.4017
Z02 =2.4759 ZQ2 =2.3529
Z03 =4.C)389 zci3 =4. 25

Z04 =6.5653 204 ❑7.1344

i= 1.743317 II 6=0.420956

Fig. 11. Stepline design by PE.

fl=lE+09 K=213 Lin=O.075n Zi=l.CIO
fu=5E+09 N=4 Lf =0.120M ZL=1O.OO

the polynomial approximation (PA) gives the tapered line
impedance function (7).

Several examples are given as illustrations of the applica-
bilityof MLS forthetransformer designs, andthe results are
compared with the available data in the literature. The relevant
data are summarized in Table I, wherein aregiven the initial
line length (Lzn), number ofsections or variables (N), lower
frequency (~~)and upperfrequency( ~~)limits ofthe desired
matching bandwidth, number of frequencies to be matched
(K+ 1), input impedance (Z~n ), load impedance (ZL ), initial
value of the error (.Ein) before the length optimization, final
line length (L ~), and final value of the error (.Ef) after several
iterations of the length optimization. The following formulas
are used to calculate the value of the standing wave ratio SWR

and the transformer input impedance 2,,, = R~m+jX~m in
terms of the input reflection coefficientr, inand around the
desired frequency band, respectively

Zi

I

The values of ll’i 1,SWR, Rim, and X,n may be drawn versus
frequency. In the figures, however, the values of 117~1and
Rin are drawn versus frequency before and after the length
optimization, which shows theeffect of the length optimization
on the transformer design. The characteristic impedances of the
stepline and/or the shape of the tapered line are also shown in
the figures as the line characteristic impedance versus position
on the line.

The programs first determine the transformer characteristic
impedance function for an initial line length and then the error
function is minimized with respect to the line length using the

I

1 f“l f“u

Newton’s method

1 .5fu

—

where cc is a constant, chosen to speed up the computation.
The linear search of interval halving can also be used [18]. The
iterations are continued until the desired optimum transformer
line length and characteristic impedance function is obtained.

Fig. 6 shows a tapered line design by PA to match a
normalized load impedance of 2 0 to an input impedance
of 1 Q. The initial line length is 5 cm, which is somewhat
greater than a quarter wavelength of the lower frequency limit
of the band. Good matching is achieved, but it improves after
length optimization. Compare the result with [3, p. 323]. Fig. 7
shows a seven-section stepline design by PE to match 5–1 Q.
The initial line length is equal to a quarter wave of the lower
frequency limit. Figs. 8 and 9 show the stepline and/or tapered
line transformer design of the same example by the methods of
AO and PLE, respectively. The results are quite the same. Note
the zigzag variation of the stepline characteristic impedance
for the shorter line lengths, which results in a bandpass filter
behavior. As the line length increases as a result of the length
optimization, the variation of the stepline or tapered line
characteristic impedance becomes smooth, changing uniformly
from about 1 to 5 fl. This results in a high-pass filter behavior
for the methods of AO and PLE. Such a behavior is more
notable in Fig. 10, where a stepline is designed by PE to match
1–2 Q in quite a narrow bandwidth of 1–2 GHz. Fig. 11 shows
a four-section stepline design by PE to match 1–10 Q. The
initial line length is chosen equal to Al/4 = 7.5 (cm), which
after the length optimization becomes 12 (cm). Compare this
result with the Chebyshev transformer design in [3, p. 317].
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Zol =1.7513
zc12 =3 .L623
203 =5.7101
ze4 =Iw

Fig. 12. Tapered lme design by PLA
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fl=lE+C19 K=2CJ Lin=O.~75 II Zi=l,!3t)
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Fig, 12shows thetransformer design of thesame example by
PLE, with better matching conditions.

It should be noted that the present formulations basedon

the theory of small reflections. In order for the results to be
reliable, the magnitude of the reflection coefficient should be

small, say less than 0.1. In the figures the value of 11’11in
some instances, particularly outside the specified frequency
band, departs from zero, which makes the values of Ir, 1,R,~,
.Yin, and SW’R incorrect. In the examples presented, however.
good impedance matching is achieved, since the value ofl17,1
is quite small in the specified frequency band and confirms
the validity of the formulation based on (l). The results of
the computer runs indicate that for the achievement of good
impedance matching the line length should be about a quarter
wavelength of the lower frequency limit of the bandwidth.
Length optimization tends to increase the transformer length,
resulting in better matching conditions, As the ratio of the
output–input impedances increases, the required length of the
transformer should increase to realize acceptable impedance
matching, Thetransformer response curves in the figures show
that the behavior of the tapered line is as a high-pass filter,
whereas that of the stepline is as a bandpass filter. Therefore,
increasing the upper frequency limit of the bandwidth does not

appreciably change the tapered line shape and length.
Better impedance matching tends to increase the stepline

length (L) and also tends to smooth up the variation of its
characteristic impedance function (Z). In the case for a given
stepline length. the characteristic impedance of the sections

I 1 .5fu
f“1 f“u

after L opt . : f = CI.Ci4322#

201 =1 .5543
zo~ =3 .1623 I I
Z03 =6 .4336
zc14 =10

changes in large steps and has an erratic behavior resulting
in poor matching conditions and then increasing the number
of sections (N) gives an improved transformer design. But
if the stepline length is too short for a given bandwidth, in-
creasing the number of sections could not necessarily improve
the impedance matching and the stepline length should be
increased accordingly. Increasing the number of frequencies
(K) improves the accuracy of the value of the error function

(e) and also increases the computation time. Increasing the
number of stepline sections however, results in increased cpu
time.

IV. CONCLUSION

It is proposed that the method of least squares as formulated
here facilitates the design of impedance transformers, since a
stepline or a tapered line of any length can be designed (from
the viewpoint of minimizing the line input reflections) to match
any two impedances over a frequency band. The designs of
steplines and tapers are, to some extent, unified here.

The computer programs serve as a tool for designers to
investigate the limitations of impedance matching for a set
of initial conditions, such as the line length, frequency band,
and inputioutput impedances. By varying the program input
quantities, the engineer can arrive at an optimum design, taking
into account limitations of space and realizability of the line
characteristic impedances. Running the computer programs for
various combinations of input values reveals interesting and
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uncommon stepline and taper shapes which for a given line
length best match two specified impedances over a desired
frequency band.
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