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Design of Impedance Transformers
by the Method of Least Squares

Homayoon Oraizi, Member, IEEE

Abstract—The method of least squares is applied to the theory
of small reflections of transmission lines to develop numerical
algorithms for the design of stepline and tapered line impedance
transformers to match two impedances over a frequency band.
The transformer characteristic impedance fanction is expanded
by polynomials, pulse functions, approximate operators, and
piecewise linear functions to construct an error function for the
input reflection coefficient which, after minimization, gives the
line impedance and length, The computer programs could be used
to design a transformer under the specified conditions and then
to optimize the design under the constraints of a problem.

1. INTRODUCTION

ATCHING networks are frequently required at the load

end of a transmission line and at its generator side.
Impedance transformers are also required at various points
in-a microwave network. Impedance matching techniques are
broadly divided into two types [1]:

1) maximum power transfer or conjugate matching
whereby a load impedance (or a transmission line input
impedance) is set equal to the complex conjugate of the
generator impedance;

2) reflectionless or Zo matching whereby a load impedance
is set equal to the characteristic impedance of a trans-
mission line. This results in a reflection coefficient of
zero at the load and an SWR on the line equal to unity.

Transformers are, in general, required to match two gen-
eral complex impedances (not necessarily constant) over a
frequency band. Several procedures are available for the design
of tapers and steplines (corresponding to high pass and band
pass filters, respectively) to achieve reflectionless transitions
between two different line impedances over a frequency band.
Excellent discussions of impedance transformation and match-
ing are available in several books [1]-[6] that refer to the
relevant literature [7].

Stepline transformers are made of a cascade of uniform
sections of transmission lines such as quarterwave, quarter-
wave multisection, binomial, and Chebyshev transformers [2],
[8]-[11}. Step discontinuities, however, introduce junction
impedances (such as change in width of microstrips and
striplines), which should be accounted for in the design of
stepline transformers. Tapered line transformers are made of a
nonuniform section of a transmission line. The taper is usually
named after the function of distance along the line which
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describes the characteristic impedance or reflection coefficient
such as exponential, triangular, and Chebyshev tapers [2],
[13]-[15].

As is seen, the theory of stepline and tapered line trans-
formers is quite involved. We recall that the input reflection
coefficient of a taper is governed by a Riccati differential
equation, however, little effort to date has been spent for
the development of numerical methods for the synthesis of
nonuniform transformers.

In this paper. a numerical procedure is developed to synthe-
size stepline and tapered line matching sections by the method
of least squares (MLS). The theory of small reflections is
assumed, and the input reflection coefficient of the matching
section is minimized to determine its characteristic impedance
variation. The least squares numerical procedure is first de-
veloped. The computer implementation is then presented. The
results of the transformer designs agree well with the published
data obtained by other design methods. Several interesting
behaviors of the stepline and tapered line matching sections are
revealed by the computer programs run for various examples
of impedance matching.

Besides developing an easily implemented numerical proce-
dure for the design of stepline and tapered line transformers of
any length over a frequency band, the solution of this problem
by the method of least squares illustrates the power and
applicability of this method for the solution of electromagnetic
problems.

II. NUMERICAL PROCEDURE

The theory of small reflections of the nonuniform lines is
applied for the development of a numerical algorithm for the
synthesis of a stepline or a taper to match two impedances over
a frequency band. Consider a tapered line with characteristic
impedance Z(z) as a function of distance connecting a voltage
source with internal impedance Z, to a load impedance Zp,
as in Fig. 1. Assume that the characteristic impedance of the
input line is equal to the internal impedance of the source
(Z4 = Z.), which is resistive and constant in the desired
frequency band. All impedances are normalized with respect
to the input line characteristic impedance as

?C =1, 7(2) = Z(Z)/ZC. and 7L = ZL/ZC.

Now the reflection coefficient at the tapered line input is [2]

r, = l/Le_m’zf{-lnf(z) dz (1)
2 dz
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z=0

z=L

Fig 1 A tapered line connecting a voltage source to a load.

L
:%c—ﬂ/ﬂmmLH,jﬂ/ eI Z(2) dz. (2)
0

The latter expression 1s obtaned through integration by parts.
The boundary conditions at the two ends of the line are

Z0)=Z,=1,2=0
Z(Ly=Zp,2=1L (3)

where L is the length of the nonuniform line.

To develop an algorithm for the determination of the stepline
and tapered line shape, the functions Z(z), In Z(z) or d/dz
In Z(z) are represented by a polynomial, pulse function
or step approximation, triangle function or piecewise linear
approximation, and an approximate operator [16]. An error
function is then constructed for I', and minimized to obtain
the coefficients of the polynomial or the amplitudes of the
expansion functions.

A. Polynomial Expansion of i Inz

Assume that the function d/dz1nZ can be _approximated
by a polynomial of degree IV, from which In Z and Z may
be obtained

J N
R InZ(z) = n}::uanzn (4)
N
TN n+1
Z(2) = exp ;?_;O‘n’_'_lanz +c (5)

where ¢ is a constant. We invoke the boundary conditions (3)
to determine ¢ = 0 and a, in terms of the other coefficients
of the polynomial
1 N 7
ao:ZhlZL_Z L (6)

n:1n+1

Now, u, from (6) is replaced in (4) and integrated or a, is
substituted in (5) to obtain an expression for In Z

N N
— 1. - I} a
WwZ=|=InZ; - —2_IL" )= N ¢/
u <Ln L Zn—l—l > +;n+1 )

n=1

Equation (7) is substituted in (1)
1. - [F 1
_ —23z 3. -
Fl_—QLanL/OP d~+25 an

n=1

L " L
. / Zn€~—)2/9: dz — / ij23z d=1. (8)
0 n+1Jg

The second integral in (8) is integrated by parts successively
or obtained from tables of integrals [17]. Then

N

1. = sinBL _ . 1
I'y=-In(Zp)——e™ %" - = 1 L7
5 n(Zzg) 3L e 2720
nle129L 1 n!
| 2P Sg(n - DIG2BL) T (j2BL)

1 sinpL J%l“:} ©)

n+1 p[L

Note that I'; is a linear function of a,, which should be
determined.

Usually, an impedance matching is required over a fre-
quency band, which is divided into K discrete frequencies.
Now, the expression for I', in (9) can be written in a concise
form as [16]

N
Pk = te+ Y Lukan (10)
n=1
where ¢, and [ are defined as in (9). The s@script k
indicates the kth frequency and the quantities /4 and Z, should
be substituted by ;. and Zr,, respectively. Then, an error
function is constructed as

K
€ = Z]‘—‘ikrtk
k=1

K N N
=Y (tk + Zlnkan> <tz + Zl:kan>. (11)

k=1 n=1 n=1

The error function is constructed in such a way that its
minimum point gives the minimization of |T',|? and SW R [2,
p. 299]. To minimize the error function. we take the derivatives
of ¢ with respect to a, and equate to zero to obtain an
expression for a,

I -1 i
ReZlnklilk} —Re}:l;‘nktk} C(12)
k—1 k=1

Therefore, determination of the polynomial coefficients leads
to a mere matrix inversion.

The error function is a nonquadratic function of the taper
length (L). Therefore, its minimization with respect to L is
performed separately.

The derivative of the error function with respect to L is

e K ot N ol N
= =2Red [ SE 4> @, ) 5+ 14an
oL ¢ (aL T2 aL><t"+nzlln’fa>

["’n} =

k=1 =

(13)
8tk 1 — . SinﬂkL .
—_— = ] S — 16 L
oL = 3 nZLk|:C0Q/6kL (1476 L) L }6

(14)
Ok nL” . sinfhe L] _ 5 1

= 08 O L — ; — g IPRE

oL n+1[“’s“ (L+itD) =57

(15)

Minimization of ¢ for L is performed by any one of the
usual routines of linear search such as the steepest descent
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Fig. 2. Approximation of In Z(z) by PE.
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Fig. 3. Representation of Z(z) by impulse functions employing AO for d/dz1nZ.

and interval halving [18]. Once the taper length is obtained, the
new values of the polynomial coefficients may be determined
by (12). In many cases, however, the length of the taper is
constrained. Finally, the characteristic impedance function of
the taper is determined by (7) once the coefficients a,, are
calculated.

Approximation of In Z(z) by a polynomial function leads
to the same results obtained above and could serve as a check
of their accuracy.

For an example, suppose the polynomial in (4) has only one
term a,. Invoking the boundary conditions (3) leads to

Z(2) = exp (% lnEL).

The reflection coefficient at the line input according to (1) is
— singL
ZL b

8L
and the error function is ¢ = |I',|2. The derivative of ¢ with
respect to L is

% = L (nZy)
oL ~ oL 7L

1 .
T, = iln e~ IPL

— osin” BL

(BL)?

The minima of ¢ occur at 3L = nx forn=1,2, 3, -

(BL cot BL — 1).

L:Qn% ‘nzl, 2,3,

7

The maxima of ¢ occur for tan 5L = (L which may be
determined graphically. For large values of 5L we have

BL=(2n+1)xr/2 and L=2n+1))/4
forn=0,1,2,--.

The above relations in this example may also be obtained from
(7N, (9), (11), (13)~(15). Compare this result with [2, p. 372].

B. Approximation of In Z(z) by Pulse Functions

The multisection line of length L is assumed to have
N + 1 sections as in Fig. 2. The length of each section is
A = L/(N+1). The midpoints of the sections are at z,, = nA

forn =1, 2,---,N. The pulse in the nth section is defined as
1 z—z|<
Pn(z'—zn)_{o lZ_Zn.|>%- (16)

Now the function In Z(z) in the interval 0 < z < L on the
multisection line is expanded as pulse functions
N+1
mZ(z) = Y anPal(z = 20) (17)
=0

where a,, are the pulse amplitudes. The pulses P, and Py
are defined in the intervals 0 < z < A/2and L—-A/2< 2z <
L, respectively. All impedances are normalized with respect
to the input impedance. Invoking the boundary conditions in
(3) leads to a, = 0 and a4 = In Z, which are replaced in
(17). To determine d/dzIn [Z(z)], the derivatives of the pulse
functions should be taken, which lead to impulse functions at
nA + A /2. Substituting this function into (1) and performing
the resulting integrations noting the sampling property of the
impulse functions, we finally have

N
I', = jsin (ﬂA)Z an exp (—j2n8A)

n=1
+ %IHZL exp [—j(2N + 1)BA]. (18)

Equation (18) can also be derived using (2).



392 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 44, NO 3, MARCH 1996

Z0 Z1 Z2 Z3 Z4 25 Z6

Fig. 4.

Fig. 5 Approximation of In Z(z) by tiangle functions PLA

TABLE I -
EXAMPLES OF IMPEDANCE TRANSFORMER DESIGN
Meth. Fig. Ly { N F4 Fy K Zin 7, £in Ly £

(cm) (GHz) (GHz) No.Freq. | () ) initial error | (cm) final error

PA 6 5.0 2 1.99 4.01 26 1 2 0.100534 | 10.8 0.006717
PE 7 7.5 7 1 5 20 1 5 0.557775 | 19.7 0.010562
AO 8 7.5 7 1 5 20 1 5 0.526697 | 20.7 0.604655
PLE 9 7.5 8 1 5 20 1 5 0.526697 | 20.7 0.004655
PLE 10 10.0 5 1 2 20 1 2 0.023877 | 24.7 0.000064
PE 11 75 4 1 5 20 1 10 1.743317 | 12.0 0.420956
PLE 12 1.5 4 1 5 20 1 10 1.522610 | 33.0 0.043228

Impedance transformers are usually designed over a fre- line length we use (13) with the following
quency band. Therefore, to use (12) for the determination of

i S i i ot 2N +1 —
the pulse amplitudes, we require the following Otk _ - + Sl Zr
oL 2(N +1)
N . ~exp [—J(2N + 1) 8, A] 1)
Re (}; zmklnk> = ;sm (BrA) aLk - Nﬂj_ C[2nsin (BA) + j cos (BA)]
cos [2(m — n)BpA] (19) -exp (—j2n3A). (22)
R K
N 1 = . C T
Re (Z [ tk> = 52 InZp sin (F,A) The characteristic impedance of the multisection line in terms
E=1 k=1 of the pulse amplitudes is

-sin [(2m — 2N — 1), A]. 20

N
Z(z) =3 " Polz —nA)+ Z1,Pysr(z — L). (23)
For the minimization of the error function with respect to the n=1
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POLYNOMIAL EXPANSIDN METHOD
2Lz}

fl=1.99E+09 K=20 Lin=0.050mn Zi=1.00
fu=4,01E+09 N=2 Lf =0.1086 n ZL=2.00

bhefore L opt.
after L opt.

tapered line
tapered line

—1'

Ly

O L fl/

before L. opt. €= 0.100534

Fig. 6. Tapered line transformer design by polynomial expansion before and after length optimization.

FULSE EXPANSION METHOD

before L opt.: after L opt.:

Zol =1.5141 Zal =1.0816
Foz =1.2639 Fo2 =1.27e8
Zo3 =2.0936 Z03 —=1.68493
Zod =2.2361 Zod =2 .2361
ZoS =2.3886 ZoS. =3.0408
Fob =3.8936 Zoe =3.91&1
Zo7 =3.3023 Zo7 =4 .6229

€= 0.5957775 €= 0.010562

Fig. 7. Stepline design by PE before and after length optimization.

For example, suppose that a line of length L is divided into
two sections. Therefore, N = 1, A = L/2, and z; = L/2.
The pulse functions are Po(z) = 1 for 0 < 2z < L/4,
P(z—L/2y=1for L/4 < 2 < 3L/4. and Po(z — L) =1
for 3L/4 < z < L. The line input reflection coefficient from
(18) and the corresponding error function from (11) are

L 1. — .
T, =jsin (%)e‘mLal + 5 In'Z e 338L/2

flr-4

1.5fu
fl fu
after L opt. | €= 0.006717
1=1E+09 K=20 Lin=0.075 i=1.00
Tu=DE+09 N=7 Lf =0.197 =5.00

-}befure L opt.:Ir]
cafter L opt.:Iv]

s ZAinwr Jy bt
Zinr

=]

€ = sin? g&a% —InZ sin® 'B—Lal + lln2 Z5.

2 2 4
Taking the derivative of € with respect to a; and equating
to zero gives a; = In \/7_]; The characteristic impedance of
the line by (23), the input reflection coefficient and the error

function for this value of a; are

Z0) = /7P (z _ g) + ZuPa(s - L)
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1=1E+09 K=20 Lin=0.07S m Zli=1.00
?u:5E+09 MH=F7 Lf =0.207 W Z1L=5.00

before L opt.: after L opt.: s pefore L opt.:iri L Zinr s

Zol =1.S474 Zol =1.0828 ;after L opt.:

Zoz2 =1.248 Zoz =1.2782 '

Zo3 ==2.1257 Zo3 =1.6455

Zod ==2.2361 Zod =2.2361 O

ZoS —2.3522 ZoS =3.0387 Zinr|,

Zo6 =4.0063 Zot =3.9118 = |derodiiec @R e

Zo7? =3.2311 Zo7? =4.6L7T g | s e

€= D.3526697 €= 0.004655

Fig. 8. Stepline design by AO before and after length optimuzation.
1. = L ,
I',==-InZ; cos (ﬁ— e=97L
. 2 2
1 L
€= 4ln 71 cos? == i

The error function becomes zero for odd multiples of a half
wavelength L = (2n+ 1)L/2, n = 0, 1. 2.---. Note that in
this formulation one section of length A/8 with impedance
Z. = 1 is placed at the input end of the line and one \/8
line of impedance is placed at the output end. Therefore,
a quarterwave line of impedance \/Z—L matches the two
impedances Z; and 1. For the design of an N section
quarterwave transformer by this method, the line length should
be L = (N+DALor A=)\/4

C. Approximate Operator for Qd; InZ(z)

The line of length L is divided into N -+ 1 sections. The
width of each section is A = L/(N + 1). The distance of
each division point from the input end is z, = nA as in Fig.
3. The characteristic impedance Z(z) is represented as a series
of impulse functions in the interval 0 < 2 < L

N

Zané(z

n=0

() = EPYNY (24)

The boundary conditions (3) give a, = 1 for 0 < z < A/2 and
ansy = Zp for L — A/2 < z < L. We use the approximate
operator for the derivative of Z(z) at the midpoint of each
section

z=(n-1/2)
InZ(nA) —InZ(nA — A))

1.5Fu

1 [ Z(nA) }
A\ ZmA - A)
%ln < o > (n—1)A < z < nA. 25)

Upn—1
The approximate expression (25) is inserted in (1) and the
resulting simple integration is carried out to obtain the input
reflection coefficient

In

Q

sin SA nBA
T, = sin A In(ap)e ="
B |/sind Zl
1. —
+ §1n(ZL)e—J(2N+lWA} (26)
We use (12) to determine In a, with the following
sin? (B A
R r
e ; mk nk Z /jkA
- Cos [2( —n)FrA] 27)
o o sm (8 A)
R Ikt Z k
€ ; mk'k AZ /1 A)
~§1n[ (2m — 2N — 1), Al (2%)

Minimization of the error function with respect to the line
length is carried out by (13) using the following

aan _

oL

dL

le—JQn F A

L

: [sin(QﬂkA) — (14 j2nBrA)

— L hlZ e 1C2N+1)B A

2L

: {(f’BAA — (1+ j2NBA)

sin ([ﬁk.ﬁ)

in? (BrA)
—_—/3kA } (29)

e

Prd
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PIECEWISE LINEAR EXPAMNIION METHOD
Iz

tapered line after L

tapered line before L opt. : o: 2

395

1=1E+09
Tu=5E+09

K=20 Lin=0.073
N=8 Lf

Zli=1.00
=0.207 ZE=5.00

L bafore L opt.2Irr]l o , Zinr o
Dafter L opt

€= 0.526697

before L opt. @

Zol =1.5474
Zoz =1.248

Zo2 =2.1257
Zoa —z2.2361
Zos —z.3522
Zo6 =4 .0063
Zo7 =2.2311

Fig 9. Tapered line design by PLA before and after length optimization.

For example, suppose that the line length L is divided into
two sections of width A = L/2 and N = 1. Therefore

sin ﬁAF—ﬂﬁA

. 1. = _ 4
T, = 54 {] sin Alna; + 5111 Zie Jﬁé]
.4 e 2
sin® BA | 4 = InZg
67W In U,l—lllZLlna1+ (m) .

Taking the derivative of ¢ with respect to In a; and equating
it to zero leads to a1 = / 4. The reflection coefficient for
this value of a; is

sin20A . —
[, = ———InZpe 22,
4ﬂA nzsje
The error function is zero for A = nA/4 and L = n\/2 for
n =1, 2, 3,---. The comment at the end of Section II-B also

holds here.

D. Piecewise Linear Approximation of In Z(z)

The tapered line of length L is divided into N sections
of width A = L/N as in Fig. 4. The division points are at
zn = nA forn = 0,1,2,---,N. The value of InZ at z,
is taken as a,, and its variation in each section is assumed
linear. Therefore

N2 ap — On

InZ(z) = A

(n-—DA<z<nA n=123,---,N. (31)

—12 + an-1— ('IL - 1)(an - afn——l)a

1.5fu
iz

after L opt. €= 0.004655

Zol =1.0828
Zo2 =1.2782
Zo3 =1.6455
Zod =2.2361
Zo3 =3.0387
Zot =3.9118
Zo7 =4.6177

The boundary conditions at z = 0 (for n = 1 and Z(0) = 1)
and at z = L (for n = N and Z(L) = Z) are applied to
geta, =1and ay = In Z .. Then substitutions of (31) in (1)
or (2) yield (26) except that N is replaced by N — 1, since
here the line is divided into N instead of N + 1 sections. Also
note that the unknown quantities here are a,, whereas in the
previous section they are In a,,. Consequently, the approximate
operator for d/dz In Z and the piecewise linear approximation
of In Z(z) are the same technique. Therefore, (26)—~(30) apply
here also, except as noted above N is replaced by N — 1. The
characteristic impedance of each section is

Z(z) = exp {%—_Aﬂ"—?—lz +na,—1 — (n— 1)a,
x (n—1)A <z < nA. (32)

Alternately, the function In Z(2) can be approximated by
triangle functions of amplitude a,, as in Fig. 5

N
InZ = Z anTn(z —nA) 33)
n=1
_f1—-|z—-nAl% |z —nAl < A
Tn(z) = {0 S zonal>a OGP
d -1 nA <z < (n+1)A
“ _Jl7a
25 () = {% (n-DA<z<nA OV

The triangle functions at the two ends of the line have only
one linear segment, at z = 0 a line with a negative slope and



396 [EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 3, MARCH 1996

PIECEHISE LINEAR EXPAMEION METHOD fl=1E+09 K=20 Lin=0.100nmn ZZi=1.(10
fu=2ZE+0%2 M=3 L¥ =0.247 n ZL=2.00

£Cz 3 0
tapered line before L opt. ! o chafore L opt.!Ir] o , Zinr 650000000

tapered line after L opt.

cafter L opt.:rl ™ , Zinr =

baefore L opt. ! €= 0.023877

Fol =1.41835
Foz =0.984598
Zo3 —=2.0264
Zo4 =1.4099
Zo3 =2
Fig. 10. Tapered line design by PLA.

at z = L a line with a positive slope. Therefore, at z = 0 no
triangle function is considered since @, = In Z(0) =1n1 =0,
and at » = L only a positive slope line is considered since
ay = InZ(L) = In Z . Substitutions of (33)~(35) in (1) or
(2) yield the same equation (26) with N replaced by N — 1.

We may also develop the piecewise linear approximation of
Z(z). However, the expression of I', will be in terms of cosine
and sine integrals and the construction of the error function and
its derivatives become unduly complicated.

For example, suppose the line length (L) has only one
segment (N = 1). Therefore, Z(z) in (31) and T, in (26)
with N = 0 are

Z(2) = exp (% ln_ZL)
lein L. —
Iy =-—""InZre 7h
9 gL MOEe
The error is ¢ = |I',|°. The condition for no reflection is
L = nA/2 for n = 1. 2. 3..--. Compare this result with [2.

p. 3721

For another example, suppose the line length (L) is divided
into two segments (N = 2) with width A = L/2. The
piecewise linear expansions in (31) are

InZ(s) =

1.5fFu

fi fu

after L opt. €= 0.0000c649

Zol =1.0378
Loz =1.z2962
o3 =1.3922
o4 =1.8907
Zo3 =2

The reflection coefficient by (26) with N = 1 is

~ sin(wL/A) —7(2rL/A)
T = wL/A ‘

1.
. {]alsin(wl,/)\)—i—EanLc](”L/A) )

The derivative of ¢ with respect to ay is equated to zero to
obtain a; = In \/ Z . Therefore

1. — sin(2xL/X) _
[, =-InZ, —— =1L/
SRERENCTS VI
The error is ¢ = |I,|2. The reflectionless line length is

L = nX/2. Compare this result with [2, p. 372].

III. COMPUTER IMPLEMENTATION

Computer programs have been written for the four ap-
proximations of the characteristic impedance function of the
transformer. Although the approximate operator (AQ) and the
piecewise linear approximation (PLA) essentially result in
the same formulation, the former gives the impedances of a
stepline (24), and the latter produces the impedance function
of a taper (32), besides giving the stepline impedances. The
pulse expansion (PE) formulation designs a stepline (23), and
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PULSE EXPANSION METHOD

before L opt.: after L. opt.:

Zol =1.5232 Zol =1.4017
Zo2 =2.4759 Zo2 =2.3529
Zo3 =4.0389 Zo3 =4.25

Zo4 =6.5653 Zo4 =7.1344
€= 1.743317 €= 0.420956

Fig. 11. Stepline design by PE.

the polynomial approximation (PA) gives the tapered line
impedance function (7).

Several examples are given as illustrations of the applica-
bility of MLS for the transformer designs, and the results are
compared with the available data in the literature. The relevant
data are summarized in Table I, wherein are given the initial
line length (L,,,), number of sections or variables (), lower
frequency (Fr) and upper frequency (F,,) limits of the desired
matching bandwidth, number of frequencies to be matched
(K + 1), input impedance (Z;, ). load impedance (Zr,), initial
value of the error (¢;,) before the length optimization, final
line length (L), and final value of the error (ey) after several
iterations of the length optimization. The following formulas
are used to calculate the value of the standing wave ratio SW R
and the transformer input impedance Z,,, = R;, + jX;, in
terms of the input reflection coefficient I', in and around the
desired frequency band, respectively

1+ 1
— = Zin =
1= T

SWR = = .
1-Ty

The values of |T;|, SWR, Ry, and X,,, may be drawn versus
frequency. In the figures, however, the values of |I';| and
R;,, are drawn versus frequency before and after the length
optimization, which shows the effect of the length optimization
on the transformer design. The characteristic impedances of the
stepline and/or the shape of the tapered line are also shown in
the figures as the line characteristic impedance versus position
on the line.

The programs first determine the transformer characteristic
impedance function for an initial line length and then the error
function is minimized with respect to the line length using the

fila | 1.
fl fu

Newton’s method

fl1=1E+09
fu=SE+09

K=20 Lin=0.075n Zi=1.00
N=4 Lf =0.120n ZL=-10.00

+ before L opt.:
jafter L or

Sfu

€, .
Lo =Li= 5750),

where oc is a constant, chosen to speed up the computation.
The linear search of interval halving can also be used [18]. The
iterations are continued until the desired optimum transformer
line length and characteristic impedance function is obtained.

Fig. 6 shows a tapered line design by PA to match a
normalized load impedance of 2 2 to an input impedance
of 1 Q. The initial line length is 5 cm, which is somewhat
greater than a quarter wavelength of the lower frequency limit
of the band. Good matching is achieved, but it improves after
length optimization. Compare the result with [3, p. 323]. Fig. 7
shows a seven-section stepline design by PE to match 5-1 2.
The initial line length is equal to a quarter wave of the lower
frequency limit. Figs. 8 and 9 show the stepline and/or tapered
line transformer design of the same example by the methods of
AO and PLE, respectively. The results are quite the same. Note
the zigzag variation of the stepline characteristic impedance
for the shorter line lengths, which results in a bandpass filter
behavior. As the line length increases as a result of the length
optimization, the variation of the stepline or tapered line
characteristic impedance becomes smooth, changing uniformly
from about 1 to 5 Q. This results in a high-pass filter behavior
for the methods of AO and PLE. Such a behavior is more
notable in Fig. 10, where a stepline is designed by PE to match
1-2 Q in quite a narrow bandwidth of 1-2 GHz. Fig. 11 shows
a four-section stepline design by PE to match 1-10 €. The
initial line length is chosen equal to A; /4 = 7.5 (cm), which
after the length optimization becomes 12 (cm). Compare this
result with the Chebyshev transformer design in [3, p. 317].
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ZLzx )
taperaed line before L opt.
tapered line after L opt.

N S

before L opt. €=z 1.522610

Fol =1.7513
Zo2 =3.1623
Zo3 =5.7101
Zod =10

Fig. 12. Tapered line design by PLA.

Fig. 12 shows the transformer design of the same example by
PLE, with better matching conditions.

It should be noted that the present formulation is based on
the theory of small reflections. In order for the results to be
reliable, the magnitude of the reflection coefficient should be
small, say less than 0.1. In the figures the value of |I',] in
some instances, particularly outside the specified frequency
band, departs from zero, which makes the values of |T,|, R,,,
X;n.and SW R incorrect. In the examples presented, however.
good impedance matching is achieved, since the value of |T,]|
is quite small in the specified frequency band and confirms
the validity of the formulation based on (1). The results of
the computer runs indicate that for the achievement of good
impedance matching the line length should be about a quarter
wavelength of the lower frequency limit of the bandwidth.
Length optimization tends to increase the transformer length,
resulting in better matching conditions. As the ratio of the
output—input impedances increases, the required length of the
transformer should increase to realize acceptable impedance
matching. The transformer response curves in the figures show
that the behavior of the tapered line is as a high-pass filter,
whereas that of the stepline is as a bandpass filter. Therefore,
increasing the upper frequency limit of the bandwidth does not
appreciably change the tapered line shape and length.

Better impedance matching tends to increase the stepline
length (L) and also tends to smooth up the variation of its
characteristic impedance function (Z). In the case for a given
stepline length, the characteristic impedance of the sections

5 P S S S S S S S S S S S S -1
0 L Ffl

fl=1E+09
Fu=3E+09

K=20 Lin=0.073m Zi=1.00
N=4 Lf =0.333 n ZL=10.00

S hafore L opt.:jr|
Loopt.:Irl = ..

iaftter

......

a4 | 1.5fu
1l fu

after L opt. €= 0.043228

Zol =1.9543
Lo2d =3.1623
Zo3 —6.4336
Zodg =10

changes in large steps and has an erratic behavior resulting
in poor matching conditions and then increasing the number
of sections (/N) gives an improved transformer design. But
if the stepline length is too short for a given bandwidth, in-
creasing the number of sections could not necessarily improve
the impedance matching and the stepline length should be
increased accordingly. Increasing the number of frequencies
(K') improves the accuracy of the value of the error function
(e) and also increases the computation time. Increasing the
number of stepline sections however, results in increased cpu
time.

IV. CONCLUSION

It is proposed that the method of least squares as formulated
here facilitates the design of impedance transformers. since a
stepline or a tapered line of any length can be designed (from
the viewpoint of minimizing the line input reflections) to match
any two impedances over a frequency band. The designs of
steplines and tapers are, to some extent, unified here.

The computer programs serve as a tool for designers to
investigate the limitations of impedance matching for a set
of initial conditions, such as the line length, frequency band,
and input/output impedances. By varying the program input
quantities, the engineer can arrive at an optimum design, taking
into account limitations of space and realizability of the line
characteristic impedances. Running the computer programs for
various combinations of input values reveals interesting and
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uncommon stepline and taper shapes which for a given line
length best match two specified impedances over a desired
frequency band.

ACKNOWLEDGMENT

The author thanks 1. Rafiei for his assistance in writing the
computer programs.

REFERENCES

[1] P. A. Rizzi, Microwave Engineering-Passive Circuits. Englewood
Cliffs, NJ: Prentice-Hall, 1988, ch. 4.

[2] R. E. Collin, Foundations for Microwave Engineering, 2nd ed.
York: McGraw-Hill, 1992, ch. 3.

[3] D. M. Pozar, Microwave Engineering. Reading, MA: Addison-Wesley,
1990, ch. 6.

[4] P. Bhartia and L. J. Bahl, Millimeter Wave Engineering and Applications.
New York: Wiley-Interscience, 1986, ch. 7.

[51 R. S. Elliot, An Introduction to Guided Waves and Microwave Circuits.
Englewood Cliffs, NJ: Prentice-Hall, 1993, ch. 8.

[6] G. Matthaei, L. Young, and' E. M. T. Jones, Microwave Filters,
impedance-Matching Networks, and Coupling Structures. Norwood,
MA: Artech House, 1988.

[71 H. Kaofman, “Bibliography on nonuniform transmission lines,” IRE
Trans. Antennas Propagat., vol. AP-7, pp. 218-220, Oct. 1955.

{8] R.E. Collin, “Theory and design of wide band multisection quarter-wave
transformers,” Proc. IRE, vol. 43, pp. 174-185, Feb. 1955.

[9] S. B. Cohn, “Optimum design of stepped transmission line transform-
ers,” IRE Trans. Microwave Theory Tech., vol. MTT-3, pp. 16-21, Apr.
1955. '

[10] H. J. Riblet, “General synthesis of quarter-wave impedance ‘transform-
ers,” IRE Trans. Microwave Theory Tech., vol. MTT-5, pp. 36-43, Jan.
1957.

[11] L. Solymar, “Some notes on the optimum design of stepped transmission
line transformers,” IRE Trans. Microwave Theory Tech., vol. MTT-6,
pp. 374-348, Oct. 1958.

[12] A. H. Hall, “Impedance matching by tapered or stepped transmission
lines,” Microwave J., vol. 9, pp. 109-114, Mar. 1966.

New

[13] R. W. Klopfenstein, “A transmission line of improved design,” Proc.
IRE, vol. 44, pp. 31-35 Jan. 1956.

[14] D. Dajfez and J. O. Prewitt, “Correction to: A transmission line of
improved design,” IEEE Trans. Microwave Theory Tech., vol. MTT-21,

. p. 364, May 1973.

[15] R.E. Collin, “The Optimum tapered transmission line matching section,”
Proc. IRE, vol. 44, pp. 539-548, Apr. 1956.

[16] R. F. Harrington, Field Computation by Moment Methods.
Macmillan, 1968.

[17]1 M. Fogiel, Handbook of Mathematical, Scientific and Engineering.
Piscataway, NJ: REA, 1992, p. 468. )

[18] D. A. Pierre, Optimization Theory with Applications.
ley, 1969.

New York:

New York: Wi-

Homayoon Oraizi (5'69-M’90) was born on April
24, 1942, in Isfahan, Iran. He received the B.E.E.
degree in 1967 from the American University of
Beirut, Lebanon, and the M.Sc. and Ph.D. degrees
in electrical engineering from Syracuse University,
N.Y., in 1969 and 1973, respectively.

He is currently an Associate Professor and Head
of the Communication Systems Group in the Elec-
trical. Engineering Department at Iran University
of Science and Technology. From 1973 to 1974

’ he taught at Khaje-Nassir University, Tehran, Iran.
From 1974 to 1985 he worked for Iran Electronics Industries, Shiraz, Iran,
as a Systems Engineer, Supervisor, and Head of the Systems Engineering
Department in the Communication Division engaged in various aspects of
technology transfer mainly in the field of HF/VHF/UHF communication
systems. In 1985, he joined the Electrical Engineering Department at the
Iran University of Science and Technology, Tehran, as an Assistant Professor.
His research interests are in the area of numerical methods in electromagnetics
engineering. He teaches various electromagnetics engineering courses and has
written two books on electromagnetics and fields and waves in Persian and
has translated an antenna book into Persian. He has published several papers
in international journals and conferences.



